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Gravity currents formed by the release of heavy fluid from an enclosed lock on a slop-
ing open channel were investigated experimentally. The experiments were conducted
in a channel that had a running length of 13 lock depths, and could be inclined to a
maximum angle of 17◦. The release of heavy dyed salt solution from a lock with an
aspect ratio (height to length) of 0.5, was examined using video images to determine
the front velocity, and a particle-tracking technique was used to measure the two-
dimensional velocity field in a vertical slice through the centre of the evolving current.
The gravity current head velocity increased with time and downstream distance
to a maximum at approximately 10 lock depths from the front of the lock. Flow
visualization and the velocity measurements have shown that during the acceleration
phase the head was being fed by a following current that increased its buoyancy as it
propagated downstream. A modified version of the theory of P. Beghin, E. J. Hopfinger
and R. E. Britter (J. Fluid Mech. vol. 107, 1981, p. 407) in which the measured increase
in buoyancy was used, instead of the original assumption of constant buoyancy, gave
results that agreed closely with the experimental velocity versus time histories.

1. Introduction
The environmentally important problem of gravity current motion over a horizontal

surface has received much attention and Simpson (1997) reviews a wide range of
applications and laboratory studies.

There has been much less work on the problem of the motion of gravity currents
down slopes. Britter & Linden (1980) considered the case of a constant flow rate of
heavy fluid down slopes at angles to the horizontal (θ) from 5◦ to 90◦. The theory they
presented made use of experiments by Ellison & Turner (1959) on turbulent entrain-
ment into a steady constant flow-rate density current flowing down a slope and used it
to estimate the flow rate into the head of the current and hence its velocity. Although
this work has some relevance to our work, which is, in essence, an unsteady version of
their problem, it is the experiments by the LEGI group at the IMG of the University
of Grenoble and collaborators that is used in what follows (see Tochon-Danguey
1977; Hopfinger & Tochon-Danguey 1977; Beghin, Hopfinger & Britter 1981; Laval
et al. 1988; Rastello & Hopfinger 2004; Etienne, Hopfinger & Saramito 2006).
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Figure 1. Definition sketch for the quantities used in the theory and elsewhere. H and L are
the head height and length; x is the distance the front of the head has moved from the lock
exit; x0 is the distance from the virtual origin (VO) to the centre of mass (CoM) at the start of
the motion, assumed to be at x = 20 cm so that the CoM was about 10 cm from the lock gate;
xCoM is the distance from the VO to the CoM). x and xCoM have been made dimensionless
using either x0 and/or H0 in what follows. θ is the channel slope and α0 the spreading angle of
the head, the value of which depends on the range of x over which it is measured, as discussed
in the text. Note that in most cases, the head of the starting current contained only a fraction
of the total, initial charge, L0H0. Also, as implied by the title, the lock was closed, i.e. had a
top cover, while the channel itself was open and did not have a cover.

Kersey & Hsu (1976), and Luthi (1980) investigated the problem of a gravity
current on a slope, generated by the release of a finite volume of negatively buoyant
material. However, the first study that considered a significant range of slope angles
and combined an experimental study with a predictive mathematical model was
Beghin et al. (1981). Their model, based on the bulk properties of the gravity current
head, has formed the basis for many of the subsequent models found in the literature,
including that presented in § 4, so a brief outline of this model is given below.

Consider the initial conditions shown in figure 1. A finite volume of dense fluid, of
density ρ, is confined within a lock of length L0 and depth H0, on a sloping channel
that is at an angle of θ to the horizontal, and is filled with fluid of density ρA. At
t = 0, the gate at the front of the lock is removed and the dense fluid accelerates
downslope. Observations show the rapid establishment of a bulbous head that grows
as it propagates down the channel, followed by a thin tail that drains the lock fluid
that remains after the head of the current exits the lock. Figure 2 illustrates the flow
development for the case of a 17◦ slope.

Beghin et al. (1981) proposed a model for the flow based on a bulk parameterization
of the motion of the current head. They assumed that the head contained a fixed
amount of buoyancy, determined by the initial conditions in the lock, and that it
entrained ambient fluid as it propagated down the channel. The head was assumed to
have a self-similar form throughout its motion. The model is based on statements of
conservation of mass and momentum for the head of the current and is an extension
of the theory developed for thermals by Escudier & Maxworthy (1973). The rate
of change of the total linear momentum of the head (or thermal), based on the
Boussinesq assumption, i.e. (ρ − ρA)/ρA � 1, is

d(ρA(1 + kv)S1HLU)

dt
= B sin θ, (1)
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Figure 2. A heavy salt solution propagating down a slope at θ = 170 to the horizontal.
Time runs from the top left to the bottom. The times at which the images were taken after
the gate was removed were (a) 11.9 s (b) 16.2 s (c) 24.3 s (d) 32.3 s. The spacing between
the ruler markings along the base of the sloping channel is 5 cm. The reduced gravity was
g′ = 2.55 cm s−2. Note the thick following layer which is feeding buoyancy into the head over
most of the run.

where B is the total buoyancy in the head, defined to be

B = g(ρ − ρA)S1HL, (2)

H and L are the height and length of the head, respectively, S1 is a shape factor,
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Figure 3. Spreading angle α0 and distance from virtual origin to the start of the motion, x0,
measured in cm. Data points represent averages over all experiments at a given angle, and the
error bars indicate the spread between the maximum and minimum values for experiments at
each angle.

defined by S1 = cross-sectional area/HL, U is the centre of mass velocity, g is the
acceleration due to gravity and kv is an added mass coefficient. Beghin et al. (1981)
assumed that the head takes the form of an elliptic cylinder for which kv = 2k where
k is the aspect ratio of the cylinder given by H/L. Note that, as in Escudier &
Maxworthy (1973) and Rastello & Hopfinger (2004), equation (1) can be easily
modified to consider non-Boussinesq effects by writing the first two terms in the large
bracket as (ρ + kvρA).

In order to solve the momentum equation for the centre of mass velocity, the
growth of the length and height of the head are required. Beghin et al. (1981) derive
this behaviour from a conservation of mass equation which is based on entrainment
of ambient fluid through the head boundary. Thus,

d(S1HL)

dt
= S2(HL)1/2α(θ)U, (3)

where S2 is a second shape factor given by S2 = (π/23/2)(4k2+1)1/2/k1/2, i.e. the circum-
ference/(HL)1/2 and α is an entrainment coefficient that may be slope dependent.
Equation (3) yields self-similar solutions for both H and L that grow linearly with x,
measured from a virtual origin x0 (see figure 1), and these solutions agree with both
their, and our, experimental observations. Note that the spreading angle α0, shown in
figure 1 and plotted in figure 3, is related to α by

α0 = S2k
1/2α/2S1. (4)
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Finally, an analytic solution to (1) can be found using the derived expressions for
H and L. The resulting solution in non-dimensional form is:

Fr2 =
Fr2

0

X4
B

+ C

(
1

XB

− 1

X4
B

)
, (5)

where Fr = U/
√

g′H 0, Fr0 = U0/
√

g′H 0, g
′ = g(ρ − ρA)/ρA is the reduced gravity based

on the original density of the lock fluid, and XB = xCoM/x0 (see figure 1) is the
dimensionless distance of the centre of mass measured from the virtual origin. U0 is
the initial velocity of the centre of mass, typically defined at XB = 1. The constant C

is defined to be:

C =
8S1B sin θ

3ρA(1 + kv)α2S2
2x0g′H0

. (6)

When the current starts from rest, the model predicts that, after an initial acceleration
phase, the centre of mass of the current head decelerates once it has reached the
downstream position

XB = 41/3. (7)

In this latter phase, the velocity of the centre of mass decreases with the square root
of the distance from the virtual origin. If the current starts with a positive speed, then
the distance at which the deceleration phase begins is less than that given in (7).

Our results, presented in § 2, demonstrate an acceleration phase that extends well
beyond the downstream distance given in (7). This apparent discrepancy can be
explained by the observation that the head of the current is being fed by the following
flow for a considerable distance from the release point. This feature of the flow is
explored quantitatively in § 3 and the experimental results of this section are used to
modify the theory of Beghin et al. (1981) in § 4. The result is a successful description
of the present experiments and a refined interpretation of the results of Beghin et al.
(1981).

Others have built their models of related flows on that of Beghin et al. (1981).
Webber, Jones & Martin (1993) developed a model for a three-dimensional gas
cloud propagating downslope. Their model did not include entrainment and required
the specification of a front condition, as did the model of Tickle (1996) who also
considered a three-dimensional cloud, but now with entrainment incorporated. Ross,
Linden & Dalziel (2002) analysed the release of a dense ‘blob’ on a slope. They
assumed the shape of the blob took the form of a wedge, of assumed geometry, and
solved a momentum equation, similar to that of Beghin et al. (1981), which included
the effects of buoyancy and drag. They also assumed that the wedge entrained ambient
fluid. Alavian (1986) also considered three-dimensional sources.

Rastello & Hopfinger (2004), who considered the motion of snow-powder avalan-
ches also included bottom friction, entrainment of particles from an erodible bed and
non-Boussinesq effects. The effect of the entrainment from the bed is to provide a
varying buoyancy force. Their formulation was anticipated by Escudier & Maxworthy
(1973) who generated an essentially identical non-Boussinesq theory for spherical
thermals.

A numerical study of the lock-exchange problem in an enclosed channel on a slope,
where the lock region and test region have equal lengths and the top of the channel is
closed, is described in Birman et al. (2007). In this case, the two-dimensional numerical
simulations give a head velocity that rises rapidly to a constant velocity that lasts for
about ten lock lengths and then enters an unsteady phase. In agreement with what
follows, they also found a feeding current from the main volume of the lock contents
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that maintained a high head velocity. Other recent numerical simulations by Etienne
et al. (2006) considered both Boussinesq and non-Boussinesq clouds where virtually
all the initial discharge enters the head at the beginning of the motion and they give
results that are close to the experiments of Beghin et al. (1981).

2. Dye experiments
2.1. Apparatus and experimental procedures

An idealized sketch of the channel used in these experiments is provided in figure 1.
This figure also includes the important length scales used in the theory of § 4. The
channel has a total length of 150 cm, an internal width of 12.5 cm and a height of
H0 = 10 cm. One end, 20 cm long (L0), was completely enclosed by a top plastic sheet
and a sliding lock gate facing the main 130 cm long channel. Two valved access-holes
were drilled and tapped into the upper end of the top plate, one to allow filling with
2500 cm3 of the test fluid and the other the escape of trapped air. Both were closed
after the lock was charged. This open channel was placed in a blocked-off section,
250 cm long, 65 cm high × 15 cm wide, of an existing flume so that it was exposed to
the total height of the water column to the free surface. In contrast to many examples
in the literature it was not a closed constant-depth channel. Within this restricted
geometry, it was only possible to raise the channel to a maximum 17◦ angle to the
horizontal. In all experiments, this section was filled with fresh water to a depth of
10 cm above the upper edge of the lock.

These experiments involved the release of a fixed volume of salty fluid of known
density, the latter being measured using an Anton Paar Model 602C density meter
that gave densities at 20 ◦C, accurate to five decimal places. The use of small density
differences required the temperature of both the released and receiving water to be
measured to an accuracy of 0.1 K and corrections made for any differences in density
owing to temperature. All of the experiments were recorded with two video cameras.

2.2. Results

Video images from a typical experiment, with a slope of 17◦, are shown in figure 2. The
flow has a high Re = g′1/2H

3/2
0 /ν and is very turbulent, ν is the kinematic viscosity. A

bulbous, approximately semi-elliptical head is seen to grow with downstream distance,
and is followed by a tail that links the current head to the fluid remaining within the
lock. This tail thins with time. Experiments run at smaller angles had the same basic
characteristics except that the growth rate of the head became progressively smaller
as the angle decreased.

For each experiment, the geometric properties of the head were measured, namely,
the aspect ratio of the current head, k = H/L, the spreading angle of the head growth,
α0, and the location of the virtual origin, x0. The latter two were calculated for each
slope angle considered using a simple linear fit to the top of the head at two locations
and then extrapolating to zero height (figure 1). The results are shown in figure 3.
The entrainment coefficient can be calculated from the spread rate, α0, through equa-
tion (4), and compared to the entrainment coefficients found by Beghin et al. (1981).
Our entrainment coefficients tend to be slightly smaller than the average values of
Beghin et al. (1981) ranging from 60 %, for a slope of 5◦, to 80 %, for a slope of 15◦.

The video records, such as that in figure 2, were carefully analysed to determine
the location of the front edge of the current. A typical history is given in figure 4. In
this figure, note that the data between x = 0 and 20 cm has not been plotted (x is the
distance from the lock gate to the front edge of the current head). This is the result
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Figure 4. Raw data, x vs. t and Frh vs. t for experiment 19/4/05-3. θ = 13◦, g′ = 3.06 cm s−2,
(g′H0)

1/2 = 5.53 cm s−1.

of the observation that the initial motion was consistently different from case to case,
presumably because of the different turbulence scale and magnitude generated by the
opening of the lock gate. Thus, the equation for the front location, given on the graph
and below, applies only to that portion beyond x = 20 cm while the fictitious initial
velocity is simply that found by curve fitting at x = 0.

In all but a few cases, a cubic polynomial fit the trajectory of the front edge of the
current to a high degree of accuracy. Thus,

x = m0 + m1t + m2t
2 + m3t

3, (8)

with m0 very small. To be consistent with the theory of Beghin et al. (1981), interest
is mainly in the velocity history of the motion, so differentiating (8) yields

Uh = m1 + 2m2t + 3m3t
2, (9)

where Uh is the velocity of the leading edge of the head. The quantities in this equation
can be made dimensionless using the velocity scale (g′H0)

1/2 and time scale (H0/g
′)1/2.

Thus, (9) becomes:

Frh = Frh0 + A0T + D0T
2, (10)

where Frh = Uh/(g
′H0)

1/2 is the running internal Froude number of the leading edge of
the head; Frh0 = m1/(g

′H0)
1/2 is the initial internal Froude number, A0 = 2m2/g

′ is an
acceleration parameter or number, D0 = 3m3/(g

′3/H0)
1/2 is a deceleration parameter

(which is negative) and T = t(g′/H0)
1/2.
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Figure 5. Frh0 vs. θ , H0/L0 = 0.5. The error bars indicate one standard deviation for the
average straight-line fit.

Based on the results from approximately 30 experiments, figures 5 to 7 show the
dependence of Fr0, A0 and D0 on the angle of the channel to the horizontal, θ . The
value of Fr0 for θ = 0◦ is close to the available values for the flat-bottomed case,
whereas figures 6 and 7 show that the acceleration/deceleration parameters in that
limit are close to, but not, zero.

What is clear from these figures is the high degree of variability between experi-
mental runs with the same slope angle. This variability is not typical of gravity
currents on a horizontal surface, as can be seen from the reduced spread in the Fr0,
A0 and D0 parameters for the case of θ = 0 (a point that has been made by others,
e.g. Shin, Dalziel & Linden 2004). This variability is not due to experimental error; it
is an intrinsic characteristic of these flows. A non-zero slope leads to a more vigorous
current than is achieved for the horizontal case. The heads of these energetic currents
are unstable and apparently slightly different turbulent evolutions can lead to sizeable
differences in the x vs. t history. Subtle differences in the initial conditions, caused by
the extraction of the gate, also may be amplified by the large-scale turbulent structure
that develops downstream.

Based on the curve fits shown in figures 5 to 7, we can reconstruct average velocity
profiles as functions of both X = x/H0 and T , realizing that there can be substantial
deviations from these. In particular, the large scatter in A0 and D0 means that the
maximum of Fr can occur over a wide range of X, although, for the averaged
parameter values, the position of the maximum is almost constant. However, there
is some value to plotting typical curves (figure 8) to give some indication of the
variations with angle. Note that the maximum of Frh is reached just before the end of
the channel and that the very broad maximum could easily be interpreted as a region
of constant Frh. This is particularly true when viewing the raw x vs. t plots where
it is easy to misinterpret the region around the inflection point as having a constant
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velocity. There is some disagreement over using a straight-line fit to the data, since
Frh0, at least, must have a maximum at some larger angle than that used here. Given
the large scatter, this seems to be the most honest way to treat the data, any other
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to 7, for three values of channel slope. X =12 represents the end of the experimental channel.

method giving results for averaged plots of x vs. t that are well within experimental
error.

Figures 3 and 8 allow for some interesting comparisons with Beghin et al. (1981)
and to some extent with Laval et al. (1988). The model of Beghin et al. (1981) predicts
that the current head will enter its deceleration phase at xCoM =0.59x0 if the current
starts from rest. Based on the measured parameters given in figure 3, the deceleration
phase should exist well within the length of the present channel, not near the end, as
illustrated in figure 8. The only slightly questionable case is that for θ = 5◦ for which
deceleration is predicted to start beyond approximately xCoM = 91 cm or X = 11. In
practice, the deceleration phase is likely to begin even earlier. As the fluid within the
lock does not begin its motion with the self-similar form assumed in the model, the
position of the virtual origin, and the start of motion, are defined from the point at
which the front of the current is approximately 2 lock depths downstream of the gate
(see figure 1). Thus, the current will be correctly modelled as having a non-zero initial
velocity, or Fr, as illustrated in the solutions discussed in § 4. The consequence of this
is to move the point of maximum velocity closer to the gate.

The video sequences, and direct observations of the flow, suggest that the major
cause of the extended acceleration phase is due to the aspect ratio (H0/L0) of the lock
in the present study being considerably smaller than that of Beghin et al. (1981). This
can be anticipated from figure 2(a) where the head of the current is formed by only
a small fraction of the total volume of fluid within the lock, approximately 60 cm2

in this case. The majority of the contents of the lock, 140 cm2, continues to feed the
head as it progresses down the slope.

It is apparent that if the aspect ratio of the lock were large enough, then once
the fluid is released by the gate, the vast majority of the fluid within the lock exits
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as part of the current head, and little fluid is left to feed the head from behind.
Thus, the assumption of constant buoyancy within the head, as invoked in the model,
is approximately valid. On the other hand, for small-aspect-ratio locks, only the
portion of the fluid closest to the gate will compose the head of the current, leaving a
significant volume of the original fluid behind in the tail. This fluid can feed additional
buoyancy into the head as it propagates downslope. For this reason, it seems likely
that the experimental results of Beghin et al. (1981) indicate a short acceleration
phase, consistent with their model, whereas ours do not.

The results of Laval et al. (1988) are somewhat more difficult to interpret. They
used several different initial volumes, but the aspect ratio of their lock is not clearly
described. In addition, only results for very small angles, 3◦ or less, are presented
in the paper, and it is generally believed that the flows generated on angles of less
than 5◦ tend to resemble those on a horizontal bottom boundary more than those on
steeper angles.

3. Flux experiments
3.1. Apparatus and experimental procedures

A series of experiments were carried out with the aim of quantifying the flux of
buoyancy entering the head of the current as it propagates away from the gate. This
was achieved by measuring fluid velocities within the current and surrounding fluid,
along the length of the channel. Fluidstream 6.01, an optimization-based implement-
ation of a particle tracking velocimetry (PTV) system, developed at the University of
Canterbury (see Nokes 2005), was employed to measure the fluid velocities.

Prior to the start of an experiment both the undyed salt solution within the lock, and
the ambient fresh water, were seeded with pliolite VT resin particles, with diameters
in the range 180–250 µm. For the time scale of these experiments, these particles can
be treated as neutrally buoyant. The particles were illuminated by a white light source
comprising a linear 2 kW halogen bulb encased within a heat resistant box. The light
from the bulb passed through two narrow slits, approximately 5 mm wide × 400 mm
long. The resulting white light sheet was approximately 10–15 mm in width and
slightly diverging in a direction perpendicular to the sheet. From our experience,
for relatively small experimental flow domains, the uniformity of this light sheet is
adequate for PTV measurements of essentially two-dimensional flows, and has the
advantage over laser sheets of being cheap, and easy to produce.

A JAI CV M4 + CL digital video camera with resolution 1268 × 1024 pixels running
at 24 Hz was used to record the motion of the pliolite particles. The camera was fixed
on a tripod and angled so that the camera frame was aligned with the channel slope.

The FluidStream software produced two-dimensional velocity fields from the
recorded images. Initially, particles were identified in each image based on threshold
light intensities. These particles were matched from frame to frame using an
optimization technique based on a number of different costing strategies. The resulting
matches were checked for consistency. Finally, a two-dimensional velocity field was
produced for each image based on the particle matches in that image. The velocity field
was interpolated onto a rectangular grid using a Thessian triangulation technique.

Because of the small aspect ratio (depth to length) of the channel and the desire
to have reasonably detailed velocity data, it was impossible to measure velocities
along the entire channel in one experimental run. Therefore, four experimental runs
were performed for each channel slope. In each run, the camera was moved to a
different location, so that the region extending from 2 lock depths to 10 lock depths
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downstream of the gate was covered in the four runs. The flow domain in each
run covered slightly more than 2 lock depths along the channel, thus ensuring some
overlap between runs. Slope angles of 0◦, 5◦, 9.5◦, 13◦ and 17◦ were investigated.

3.2. Results

For each PTV run, the average Fr of the front was calculated as a check for consistency
with the dye-based experiments. The front speed was deduced in two ways. First, the
raw particle images were analysed and the time taken for the front to travel from one
side of the camera window to the other was determined. This measurement is not as
easy with particle images as it is with dye images, as the location of the front can be
difficult to determine. For this reason, a second method was devised. Using the velocity
field data, a contour plot of the vertical (or horizontal) component of the velocity
field at a fixed height in the flow (typically 0.1H0) was plotted as a function of x and
t . The front appears as a characteristic curve in the (x, t)-plane which is generally
easily identified, and the average slope of this characteristic was used as a second
estimate of the front speed. These two estimates generally agreed to within 5 %.

The Froude numbers derived from the PTV experiments exhibited the same variabi-
lity as those from the dye experiments when the slope angle was 5◦ or greater – with
differences between the canonical curves in figure 8 and those calculated from the
PTV experiments typically within ±15 %. Once again, for a horizontal bottom, this
variation was minimal and the Froude numbers for the four runs at this angle agreed
to within a few per cent. The impact of this variability is that velocity fields from
different runs at the same slope cannot be directly compared or overlaid, and hence
the deduced buoyancy, or volume, fluxes are hard to interpret.

To resolve this problem, the velocity fields for each run were non-dimensionalized
using the same space, time and velocity scales as introduced earlier, and then scaled
so that the Froude number computed from the velocity field at the mid-point of the
measurement window matched the Fr at the same location on the ‘canonical’ Fr curve
found in figure 8. Thus, if the measured Fr was lower than that in figure 8, then all
velocities in the measured field were increased by the appropriate factor. Following the
scaling of the velocity fields, time scales were also transformed to ensure consistency
in the non-dimensional coordinates. Finally, the temporal and spatial coordinates for
all runs, at a particular slope, were translated to ensure that the coordinate systems
of all runs could be overlaid.

While this approach is not ideal, as it ignores changes in flow structure between
runs, it at least provides a consistent way of analysing the velocity data.

This transformed velocity data was used to provide an estimate of the inflow of
negatively buoyant material from the following current into the head. The head can
be viewed as a fluid volume that expands as it moves downslope. The theory of Beghin
et al. (1981), and our measurements, indicate that both the height and length of the
head increase approximately linearly from a virtual origin. For fluid in the following
current to be able to enter the head, and hence contribute to its overall buoyancy, it
is reasonable to require that its velocity should exceed that of the trailing edge of the
head. Certainly, fluid travelling towards the front at a speed of less than the trailing
edge will be left behind in its wake. The speed of the trailing edge was not measured
experimentally. Instead, this speed was calculated from the measured front speed, the
growth rate of the head and its aspect ratio. For all calculations here, variations in the
aspect ratio were ignored and a constant aspect ratio of 0.25 was assumed, although
observations suggest that near the gate, the aspect ratio is somewhat larger than this.
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In order to calculate the buoyancy flux into the head, two assumptions were made.
First, any material entering the head from the following current was assumed to have
the same density as the fluid initially within the lock. This allows volume fluxes, that
can be obtained from the velocity data, to be readily converted into buoyancy fluxes.
Without actual concentration profiles, this assumption cannot be strictly justified.
However, it seems reasonable to believe that fluid that has been significantly diluted
through entrainment and mixing at the interface between the ambient and dense
fluids will possess insufficient downslope momentum to keep pace with the head.
Secondly, the volume flux into the head is calculated at the location behind the head
where the following current depth is a minimum. This depth is found by determining
the height above the slope at which the velocity in the flow drops below the velocity
of the trailing edge of the head. This second assumption is made for two reasons.
(i) An unambiguous location for calculating the flux must be determined, and it was
found, almost without exception that a clear minimum depth occurred within the
following current close to the rear of the head. (ii) Visual inspection of the velocity
fields indicated that this minimum depth occurred roughly at the rear of the head
(although the definition of the head in unsteady flows of this nature is often difficult).
A comparison between the position of minimum depth and the location of the rear
of the head calculated from the front position, and L calculated from the growth
rate of the head, were generally in good agreement, although as mentioned above,
near the gate the latter of these two estimates tended to predict a position that was
further upslope. In other words, the minimum depth location tended to suggest that
the aspect ratio of the head was larger than 0.25 near the gate.

Figure 9 illustrates a typical longitudinal profile of the current depth (as defined
above) at T = 8 for a slope angle of 9.5◦. A minimum depth at X ∼ 3.1 is identifiable
in figure 9(a) and this location clearly corresponds to the narrow inflow at the rear
of the current head (figure 9b).

The two-dimensional volume flux into the head was calculated as the integral, over
the minimum depth, of the current velocity that is in excess of the trailing edge
velocity. Flux calculations could not be made in the early period of propagation.
During this time, the current was becoming established and initially, at least, the
trailing edge of the current was within the lock or just downstream of the gate, where
velocity measurements were not taken. Therefore, flux measurements began when the
current head was approximately 4 to 5 lock depths from the gate.

The scatter in the calculated fluxes is significant (see figure 10), owing to the turbu-
lent nature of the flow, and the fact that the fluxes are obtained from instantaneous
velocity profiles. Nevertheless, the fluxes show a clear decrease beyond approximately
6 lock depths from the gate, vanishing when the current head is between 11 and 14
lock depths downstream. Before this region of decreasing flux there is a suggestion
that the flux is approximately constant, and this assumption will be made here.
Certainly for lock exchange flows on a horizontal surface, the volume flux from the
lock is approximately constant until the finite length of the lock is felt (McBryde
2006) and this would add some support to such as assumption in the early stages of
the current’s development.

For each slope, three parameters were used to fit the flux data. The first is the
initial constant flux, the second the value of X at which the flux begins to decrease,
XT , and the third is the value of X at which the flux becomes zero, XZ . The first
of these parameters was estimated from the limiting flux values near the transition,
while the second and third were found from a least-squares linear fit to the flux data
beyond the constant region. All three parameters are given in table 1.
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Figure 9. (a) The current depth as a function X for T = 8 and a slope angle of 9.5◦. The
inflow depth is defined as the minimum current depth closest to the current head, where the
current depth is defined as the height within the flow where the flow velocity first drops below
the trailing-edge velocity. The data in this figure were obtained by overlaying two different
runs. The overlap occurs between X = 3.8 and X = 4.2. (b). The velocity field corresponding to
T = 8 for a slope angle of 9.5◦. The minimum depth corresponding to the inflow depth in (a)
can be identified at X ∼ 3.1.

The fluxes for all runs are presented in figure 10. In this figure, the flux has been
scaled by its value in the constant region, and X has been scaled by the point at which
the flux vanishes. Although alternative fits could be suggested, those used here tend
to capture the key features of the flux, and the final solutions tend to be relatively
insensitive to the exact form of the flux functions, particularly in the linear decay
region where the contribution to the total flux is less significant.

Clearly, at some point, the following current will no longer be able to feed the
head. Either it will exhaust the supply of material from the lock, or the head (which is
still accelerating at this time) will be travelling too rapidly for the following current,
which is gradually thinning with distance along the slope, to keep up. The results
above indicate that the distance at which the feed ceases is almost independent of
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Figure 10. The inflow volume flux as a function of front position for slope angles 5◦, 9.5◦,
13◦ and 17◦. The flux has been scaled with the initial constant flux, and X has been scaled by
the point at which the flux is estimated to vanish. These quantities are given in table 1. Note
the constant flux portion of the curve only extends to the initial position of the motion, which
corresponds to approximately X = 2.

θ (deg.) k Flux XT XZ βI VI �β �V �β/�V

5 0.25 0.028 6.9 12.8 0.67 0.92 0.36 1.64 0.22
9.5 0.25 0.05 5.7 11.9 0.64 0.95 0.51 2.41 0.21

13 0.25 0.046 6.2 13.9 0.62 0.79 0.51 3.54 0.14
17 0.25 0.075 5.7 11.6 0.69 1.09 0.62 3.24 0.19

Table 1. Variable buoyancy model parameters. θ is the slope angle; k is the aspect ratio = H/L;
flux is the estimated constant flux; XT is the downstream location of the current’s leading
edge at which point the flux begins to decay; XZ is the downstream location of the current’s
leading edge at which the flux drops to zero; βI is the initial dimensionless buoyancy (volume)
within the head; �β is the change in dimensionless buoyancy (volume) owing to the inflow
from the following current; VI is the initial dimensionless (volume) within the head calculated
from H and L at the start of the motion; �V is the total change in dimensionless head volume
deduced from the calculated values of H and L (evaluated at the point where the flux from the
following current ceases), it includes the increase in volume owing to the following inflow and
entrainment. Thus, �β/�V is the proportion of the total flow into the head owing to the flux
from the following current. Note, βI is found from a best-fit match between the experimental
and model curves and �β is found from the integral of the measured buoyancy flux (see (15)).

angle, and is between 11 and 14 lock depths from the gate. Table 1 shows a flux
dependence on slope, with the initial flux increasing with slope angle. Although there
is little difference between this initial value for the 9.5◦ and 13◦ slopes, an overall
trend is clearly evident. Although the Fr of the front increases significantly with slope
angle (see figure 8), the Fr of the trailing edge does not, owing to the increase in
growth rate with slope angle. Thus, as the flow velocities increase with slope angle so
does the volume flux.
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4. Theoretical model
Beghin et al. (1981) modelled the motion of the centre of mass (CoM) of an

isolated volume of fluid driven down a slope by its inherent negative buoyancy as
discussed in § 1. This buoyancy was gained at the time of release and was assumed
to remain constant. The model predicted a brief initial acceleration phase followed
by a deceleration due to the entrainment of ambient fluid. Our experiments exhibit
significantly different behaviour where the acceleration phase continues until the
front reaches a distance of approximately 10–11H0 from the lock gate. The flux
measurements of the previous section suggest that this extended period of acceleration
results from the continual feeding of negatively buoyant material into the rear of the
head during the initial phase of its motion. In this section, we explore the implications
of increasing buoyancy on the Beghin et al. (1981) model. In addressing this problem,
we will use the experimental flux results of the last section as an input to the model.
Note that Rastello & Hopfinger (2004) presented a model where increasing buoyancy
due to entrainment of snow from the bottom boundary was included. Although the
mechanism by which the buoyancy increases is different, the qualitative effect on the
motion of the current head will be similar.

The theory of Beghin et al. (1981) was briefly reviewed in § 1. We now generalize
this by writing (1) as

d(ρA(1 + kv)S1HLU )

dt
= B(xCoM) sin θ, (11)

where B(xCoM) indicates that the buoyancy is now a function of the position of the
centre of mass. Using the expressions for L and H derived by Beghin et al. (1981)
(11) can be converted into an ODE for U as a function of xCoM given by

U
d
(
x2

CoMU
)

dxCoM

=
4B(xCoM)S1 sin θ

S2
2α

2(1 + kv)ρA

. (12)

Note that the solution of (12) yields a constant velocity when the buoyancy within
the head grows linearly with xCoM. This is the constant flux problem considered by
Britter & Linden (1980) and their results provided clear evidence of this constant
velocity regime.

Non-dimensionalizing the velocity and length scales with
√

g′H 0 and H0, respec-
tively, yields the equation for the centre of mass Fr given by

Fr
d
(
X2

CFr
)

dXC

= β(XC)
4S1 sin θ

S2
2α

2(1 + kv)
, (13)

where XC = xCoM/H0 and β is a dimensionless volume in units of H 2
0 defined by

B = βg′ρAH 2
0 . (14)

If the buoyancy within the head is equal to that initially in the lock, then β = L0/H0.
β can be calculated using the flux measurements described previously

β =

∫ XC

x0/H0

Flux dt + βI =

∫ XC

x0/H0

Flux(XC)
dt

dXC

dXC + βI =

∫ XC

x0/H0

Flux(Xc)

Fr
dXC + βI ,

(15)

where βI is the initial buoyancy within the head at XC = x0/H0. Note that the integral
in (15) is with respect to the position of the centre of mass, XC , not the front location
which was used in the previous section to present the flux data. Strictly speaking,
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the integral in (15) cannot be evaluated without knowledge of the Froude number of
the centre of mass. However, to simplify matters, we will use an average value for
Fr taken from the experimental data. Although Fr varies by as much as 20 % from
the average value, we do not believe the errors introduced are significant relative to
those from the flux measurements themselves.

One piece of information that is required in evaluating β is the initial volume of
buoyant material within the head of the current, βI . This can be estimated in a number
of ways. Ideally, it could be deduced from the dye experiments, but such estimates
are likely to incur relatively large errors. Alternatively, it could be determined by
matching the initial slope of the experimentally determined Fr curve with that of the
model. However, this approach is also problematic as it is in the near-gate region
that the model is most likely to deviate from the observed behaviour owing to an
initial transient phase in which the self-similar form of the head fully develops and
the conditions at release are forgotten. Instead we choose an initial buoyancy that
yields the best fit between model and experiment. These initial values are presented
in table 1 along with the increase in volume, �β , obtained from the integral in (15).

Table 1 also gives the contribution made to the total inflow into the head by
the flux from the following current – the remainder of this inflow being due to the
entrainment expressed in (3). This contribution is calculated at the point on the
slope at which the flux from the following flow terminates. The figures indicate that
while the inflow through the rear of the head is significant, around 20 % of the total
inflow, the dominant contribution to the head growth still comes from the turbulent
entrainment through the head/ambient interface. The assumption of self-similarity
that is intrinsic to the entrainment model embodied in (3) is clearly not valid for the
inflow from the following flow. However, this lack of self-similarity does not appear
to have a major effect on the overall growth of the head, which exhibits a near linear
growth with distance. If the effect of the inflow were to be detected it is most likely
to be seen near the gate where the head is small and the motion slow. Table 1 also
shows that the initial buoyancy captured within the head is roughly independent of
slope angle, while the total buoyancy fed into the head increases markedly with angle.

Although (15) can be integrated directly if β(Xc) can be written as a polynomial, it
is simpler to integrate it numerically for each slope angle, using the piecewise linear
flux functions to evaluate β(Xc). Figure 11 presents the results of these integrations
for two slope angles, 9.5◦ and 17◦. These two slopes represent the best and worst
fits between the model predictions and experimental results. Plotted in each figure is
the experimentally determined dependence of Fr on X (for the front, tail and centre
of mass of the head), the variable buoyancy model predictions, and two different
scenarios based on the constant buoyancy model given in (4). A different buoyancy
is used in each of these scenarios. In model 1, the total buoyancy matches the initial
buoyancy in the variable buoyancy model, βI , and in model 2, the total buoyancy
initially within the lock is used, i.e. β = 2. Note that the models are not started from
rest, for the reasons discussed in § 2.2. Instead, the Fr is given an initial value that
matches the experimental curves.

The results demonstrate that the constant buoyancy model is unable to reproduce
the trends observed in the dye experiments. The most prominent feature of the
experimental curves, as discussed previously, is the continual acceleration of the
head, until it reaches approximately 10 or so lock depths from the release point.
The constant buoyancy model predicts a maximum Fr much closer to the gate,
this maximum occurring further upstream as the slope increases, or the buoyancy
decreases. Thus, for an angle of 17◦, with a buoyancy of βI , the maximum Fr occurs
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Figure 11. The Fr of the centre of mass, tail and front, as functions of the front position for
(a) 9.5◦ and (b) 17◦. The dashed line corresponds to the Fr of the front determined from the
dye experiments, while the dark and light solid lines correspond to the centre of mass and tail
Froude numbers, respectively. The other symbols correspond to model predictions based on
constant or variable buoyancy within the head (as explained within the text). Note the model
curves begin at the initial position of the motion, which corresponds to approximately X =2.
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at approximately 3 lock depths downstream of the gate. Only for the 5◦ slope, with
the total buoyancy in the lock contained within the head, does the location of the
maximum Fr approach X ∼ 10. In addition, the constant buoyancy model either
predicts substantially higher Fr values than those seen in the laboratory data, when a
larger buoyancy value is selected, or it leads to unrealistically low speeds downstream
when a lower buoyancy is assumed.

In contrast, the variable buoyancy model, despite its crudity, is surprisingly
successful at predicting the evolution of Fr. The extended acceleration phase is
present in the predictions for all angles, and the general trend of the experimental
curves is faithfully reproduced by the model. For the lower angle, 9.5◦, the agreement
between experiment and model is very good throughout the region of measurement.
For the largest slope, 17◦, the model curve tends to overpredict the speed of the centre
of mass initially and underpredict it as the current approaches its maximum speed.
The results for 13◦ exhibit the same trend, although to a lesser degree than for the 17◦

case. This may suggest that the assumption of a constant flux early in the current’s
development is less appropriate for the larger angles than it is for the smaller angles.
Even so, to reproduce the latter portion of the motion, the flux would need to last
longer, and at a higher level than that predicted by the measured fluxes.

All of these variable buoyancy model curves are based on the choice of an initial
buoyancy that leads to the best fit between the model and experimental curves.
Increasing this initial buoyancy increases the Fr throughout the motion, whereas
decreasing it leads to the opposite effect.

While the agreement between model and experiment is somewhat less convincing
with increasing angle, these results support the notion that the incorporation of a
buoyancy flux into the rear of the head, during its initial development, is critical in
predicting the motion of the head.

5. Discussion of the results in the initial acceleration phase
Based on the observations and results presented above, the dynamical processes

involved in the motion of a gravity current down a slope now seem clearer. After the
lock gate was suddenly opened, a lower layer with a more or less constant thickness,
at slightly more than half the lock height, was formed. This rapidly evolved into
an approximately semi-elliptically-shaped head with an initial aspect ratio (H/L) of
between 0.25 and 0.30 containing a fraction of the fluid originally in the lock. The
larger fraction of the lock fluid acted as a feeder layer, with decreasing flux, into
the rear of the head, and resulted in a steadily increasing negative buoyancy driving
the downward motion until, at, or close to, the maximum velocity, the inflow ceased.
After the flux of negatively buoyant fluid into the current head ceased, it could be
assumed, as has been done by previous workers, that the current would then propagate
as a current with constant buoyancy, i.e. with a velocity that eventually decreases as
X

−1/2
B or T −1/3. However, the present channel was not long enough for that state to

be reached. Experiments in a longer channel that explore the modification of such a
decay law for a variety of geometries will be presented in Part 2 (Maxworthy 2007a).

Using knowledge gained to this point, we might predict that if the lock length (L0)
had been sufficiently small, the initial head could have contained most, if not all, of
the lock fluid, and the case considered experimentally, and theoretically, by Beghin
et al. (1981) would have been rapidly achieved. An estimate of this length for the
present geometry is in the range 6–12 cm. We can apply a variation of this argument
to the data in Beghin et al.’s figure 9, for example. Their H0 was 8 cm, so we can
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estimate that the initial outflow layer was approximately 4.2 cm deep. Assuming that
the aspect ratio of the initial head was 0.26, as for the present 9◦ case, then L = 16 cm
and its volume 53 cm2. The lock volume was 80 cm2 so only 27 cm2 would be available
to feed the head. We suspect that this might be one of the reasons for the slight
discrepancy in their experimental and theoretical comparison.

The results of Laval et al. (1988) must also be re-evaluated, although here there is
some difficulty since they did not present all of the data and conditions that are re-
quired for a completely satisfactory discussion. Based on their sketch of the apparatus,
it seems that the saline solution never filled the lock, thus the initial outflow was most
probably the same height as the initial static height, as found in Part 2 (Maxworthy
2007b) of the present series. Based on this assumption, and using a value of k =0.25,
we can estimate the volume of the initial head and show that all but the lowest
initial height had a volume that included almost all of the lock fluid. Therefore, these
should quickly evolve as constant buoyancy currents: as they, in fact, found. The
shallowest initial depth was of the type discussed in our experiments, but no detailed
measurements were presented of that case. Also, since all their experiments appeared
to use a constant lock length, their finding of a velocity variation with the square
root of the volume could be interpreted, as here, as a variation with H

1/2
0 .

6. Conclusions
A laboratory study of gravity currents in sloping open channels, generated by the

release of a finite volume of dense fluid from an enclosed lock, has been described. The
results from approximately 30 visual dye experiments, for slope angles ranging from 0◦

to 17◦, clearly indicate that the current head does not exit the lock with its entire initial
buoyancy content when the lock aspect ratio is equal to 0.5. Velocity measurements,
obtained from a series of PTV experiments, confirm our visual observations that,
until the current head reaches approximately 12 lock depths downstream of the gate,
it is fed from behind by a dense current comprising some of the fluid left behind in
the lock. This buoyancy flux explains the extended acceleration period observed in
our experiments when compared to the predictions of a constant buoyancy model
developed by Beghin et al. (1981). This model has been adapted to account for
increasing buoyancy within the head, and using buoyancy flux estimates deduced
from the velocity measurements, good agreement between the experimental Fr time
histories and the model predictions has been obtained.
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